Brief Communication

Bicovariant DeRham Cohomology of $S U_{q}(2)$

Max Grieß1
II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussée 149, 22761 Hamburg, Germany

Received 23 December 1993; revised 22 July 1994

Abstract

Bicovariant differential forms over the quantum group $S U_{q}(2)$ are considered. Their multiplet structure is determined under the action of $S U_{q}(2)$. This gives a basis of the forms. The exterior derivative of forms and elements of the Hopf algebra \mathcal{A}, which is generated by the matrix elements $M^{i}{ }_{j}$, is explicitly calculated. Then the closed and exact forms are compared. This gives the bicovariant DeRham Cohomology of $S U_{q}(2)$.

Keywords: Quantum groups; Differential forms;
I99I MSC: 16 W 30, 81 R 50, 17 B 37
PACS: 02.40.-k

1. Introduction

In this work I consider especially the quantum group $S U_{q}(2)$. It has already been investigated in great detail in [Weich,Worl]. In [Wor1] the DeRham Cohomology of $S U_{q}(2)$ has been determined. But this was based on a differential calculus of $S U_{q}(2)$, which is not a bicovariant bimodule over the Hopf algebra $\mathcal{A}\left(S U_{q}(2)\right)$. In this work now the DeRham Cohomology is determined with the help of the bicovariant differential calculus from [CSWW].

2. The quantum group $S U_{q}(\mathbf{2})$

The notion of a quantum group has been investigated in [FRT] and [Drin]. My notation is guided by [CSWW], specialized to the case $S U_{q}(2)$.

The main structure of a quantum group is the structure of a Hopf algebra. The quantum group $S U_{q}(2)$ is the Hopf algebra $\mathcal{A}=\mathcal{A}\left(S U_{q}(2)\right)$ generated by the matrix
elements $M^{i}{ }_{j}, i, j=1,2$, and with coproduct Δ, counit ε and antipode κ and with the following commutation relations:

$$
\begin{equation*}
\widehat{R}_{q}^{i j}{ }_{j^{\prime} i^{\prime}} M_{j^{\prime}}^{j^{\prime \prime}} M_{i^{\prime}}^{i^{\prime \prime}}=M_{i^{\prime}}^{i} M_{j^{\prime}}^{j} \widehat{R}_{q}^{i^{\prime} j^{\prime}}{ }_{j^{\prime \prime} i^{\prime \prime}}, \tag{1}
\end{equation*}
$$

where the R-matrix is defined as

$$
\widehat{R}_{q}=\left(\widehat{R}_{q}^{i j}{ }_{k l}\right)=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

A convenient basis over the field of complex numbers for the algebra \mathcal{A} is [Wor 1]

$$
\begin{equation*}
\left\{\left(M_{1}^{1}\right)^{k}\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m},\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m}\left(M_{2}^{2}\right)^{n}: k, l, m \in \mathbb{N}, n \in \mathbb{N} \backslash\{0\}\right\} \tag{2}
\end{equation*}
$$

With the help of (1) and $\operatorname{det} M=M_{1}{ }_{1} M^{2}{ }_{2}-q M^{1}{ }_{2} M^{2}{ }_{1}=1$ it is possible to write every monom in the matrix elements in this basis.
$S U_{q}(2)$ has also a corresponding Exterior Algebra Γ_{Ad} with left- and right-coaction Δ_{L} and $\Delta_{R}, \rho \in \Gamma_{\mathrm{Ad}}^{\wedge}$ is called left-invariant if $\Delta_{L}(\rho)=1 \otimes \rho$ and right-invariant if $\Delta_{R}(\rho)=\rho \otimes 1$. The invariant elements form linear subspaces inv $\Gamma_{\mathrm{Ad}}^{\wedge}$ and $\Gamma_{\mathrm{Ad} \text { inv }}^{\hat{}}$ of $\Gamma_{\mathrm{Ad}}^{\wedge}$, respectively. If $\left\{\eta^{J} \in \Gamma_{\mathrm{Ad} \text { inv }}^{\wedge}: J\right.$ of an index set $\}$ is a basis of the right-invariant elements then every element $\rho \in \Gamma_{\mathrm{Ad}}^{\hat{}}$ can be written as

$$
\begin{equation*}
\rho=\sum_{J} a_{J} \eta^{J}, \quad a_{J} \in \mathcal{A} \tag{3}
\end{equation*}
$$

The bicovariant bimodule Γ_{Ad} of $S U_{q}(2)$ is constructed in a way such that the rightinvariant basis transforms as the adjoint representation [CSWW]. This means that the right-invariant basis of $\Gamma_{\mathrm{Ad} \text { inv }}$, denoted as $\Theta_{j}{ }_{j}$, has to transform under left-coaction as

$$
\Delta_{L}\left(\Theta_{j}^{i}\right)=M_{i^{\prime}}^{i} \kappa\left(M_{j}^{j^{\prime}}\right) \otimes \Theta_{i^{\prime}}^{i^{\prime}} .
$$

If one uses a different right-invariant basis

$$
\Theta^{i j}:=\Theta^{i}{ }_{j} \varepsilon^{i^{\prime} j}
$$

then it will transform as

$$
\Delta_{L}\left(\Theta^{i j}\right)=M^{i}{ }_{k} M_{l}^{j} \otimes \Theta^{k l}
$$

The right-invariant basis $\left\{\Theta^{11}, \Theta^{12}, \Theta^{21}, \Theta^{22}\right\}$ can be split into irreducible parts, i.e. in a singlet

$$
\Theta_{X}^{i j}:=\mathcal{P}_{X}^{i j}{ }_{k l} \Theta^{k l}=-\frac{1}{\llbracket 2 \rrbracket} \varepsilon^{i j} X, \quad X:=\varepsilon_{k l} \Theta^{k l}, \quad \Delta_{L}(X)=1 \otimes X,
$$

and a triplet, that transforms like the adjoint representation:

$$
\Theta_{\mathrm{Ad}}^{i j}:=\mathcal{P}_{\mathrm{Ad} k l}^{i j} \Theta^{k l}, \quad \Delta_{L}\left(\Theta_{\mathrm{Ad}}^{i j}\right)=M^{i}{ }_{k} M_{l}^{j} \otimes \Theta_{\mathrm{Ad}}^{k l}
$$

This triplet consists of e.g. $\Theta_{\mathrm{Ad}}^{11}, \Theta_{\mathrm{Ad}}^{12}$ and $\Theta_{\mathrm{Ad}}^{22}$, because the fourth element $\Theta_{\mathrm{Ad}}^{21}$ is linearly dependent: $\Theta_{\mathrm{Ad}}^{21}=q^{-1} \Theta_{\mathrm{Ad}}^{12}$.

For the DeRham Cohomology one needs a basis of the differential forms over the field of complex numbers. For this it is useful to know the irreducible multiplet structure. The results are:
$-\left\{\Theta_{\mathrm{Ad}}^{11}, \Theta_{\mathrm{Ad}}^{12}, \Theta_{\mathrm{Ad}}^{22}, \widetilde{X}\right\}$ is a basis of Γ_{Adinv},

- $\left\{\Lambda^{11}, \Lambda^{12}, \Lambda^{22},{ }_{x} \Lambda^{11},{ }_{x} \Lambda^{12},{ }_{x} \Lambda^{22}\right\}$ is a basis of $\Gamma_{\text {Adinv }}^{\wedge^{2}}$,
$-\left\{\Phi_{5}^{11}, \Phi_{5}^{12}, \Phi_{5}^{22}, \Phi_{2}\right\}$ is a basis of $\Gamma_{\mathrm{Ad} \text { inv }}^{\wedge 3}$,
- Ω_{2} is a basis of $\Gamma_{\mathrm{Ad} \text { inv }}^{\wedge 4}$,
$-\Gamma_{\mathrm{Ad}}^{\wedge 5}=0$.
For instance with $\widetilde{X}:=\sqrt{q} X$,

$$
\begin{aligned}
\Lambda^{11}:= & \Theta_{\mathrm{Ad}}^{11} \otimes \Theta_{\mathrm{Ad}}^{12}-q^{2} \Theta_{\mathrm{Ad}}^{12} \otimes \Theta_{\mathrm{Ad}}^{11}, & & X \Lambda^{11}:=\Theta_{\mathrm{Ad}}^{11} \otimes \widetilde{X}, \\
\Lambda^{12}:= & q\left(\Theta_{\mathrm{Ad}}^{11} \otimes \Theta_{\mathrm{Ad}}^{22}-\Theta_{\mathrm{Ad}}^{22} \otimes \Theta_{\mathrm{Ad}}^{11}\right) & & X \Lambda^{12}:=\Theta_{\mathrm{Ad}}^{12} \otimes \widetilde{X}, \\
& -\left(q^{2}-q^{-2}\right) \Theta_{\mathrm{Ad}}^{12} \otimes \Theta_{\mathrm{Ad}}^{12}, & & \\
\Lambda^{22}:= & \Theta_{\mathrm{Ad}}^{12} \otimes \Theta_{\mathrm{Ad}}^{22}-q^{2} \Theta_{\mathrm{Ad}}^{22} \otimes \Theta_{\mathrm{Ad}}^{12}, & & X \Lambda^{22}:=\Theta_{\mathrm{Ad}}^{22} \otimes \tilde{X} .
\end{aligned}
$$

The details are given in [G].

3. The exterior derivative $\mathrm{d}: \mathcal{A} \rightarrow \Gamma_{\mathrm{Ad}}$

The exterior derivative $\mathrm{d}: \mathcal{A} \rightarrow \Gamma_{\mathrm{Ad}}$ is defined as

$$
\mathrm{d} a:=\frac{1}{\mathcal{N}}(X a-a X)=\frac{1}{\mathcal{N} \sqrt{q}}(\widetilde{X} a-a \widetilde{X}), \quad a \in \mathcal{A}
$$

Let $a \in \mathcal{A}$. In the \mathbb{C}-Basis (2) of \mathcal{A}, a is written as

$$
a=\sum_{l, m=0}^{\infty}\left[\sum_{k=0}^{\infty} \alpha_{k l m 0}\left(M_{1}^{1}\right)^{k}\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m}+\sum_{n=1}^{\infty} \alpha_{0 l m n}\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m}\left(M_{2}^{2}\right)^{n}\right]
$$

with coefficients $\alpha_{k l m 0}, \alpha_{0 l m n} \in \mathbb{C}$, where only a finite number are nonzero. In the right-invariant basis $\left\{\Theta_{\mathrm{Ad}}^{11}, \Theta_{\mathrm{Ad}}^{12}, \Theta_{\mathrm{Ad}}^{22}, \widetilde{X}\right\}$ the derivative of a is

$$
\begin{aligned}
\mathrm{d} a= & \frac{1}{\sqrt{q}\left(q-q^{-1}\right) \mathcal{N}_{0}} \\
& \times\left[\left(a * f_{41}\right) \Theta_{\mathrm{Ad}}^{11}+\left(a * f_{42}\right) \Theta_{\mathrm{Ad}}^{12}+\left(a * f_{43}\right) \Theta_{\mathrm{Ad}}^{22}+\left(a * f_{44}-a\right) \tilde{X}\right]
\end{aligned}
$$

for instance with

$$
\begin{aligned}
a * f_{41}=-\left(q-q^{-1}\right) & \sum_{l, m=0}^{\infty}\left[\sum _ { k = 0 } ^ { \infty } \left\{\alpha_{k+1 l+1 m 0} q^{k+l+1} \llbracket l+1 \rrbracket\right.\right. \\
& \left.+\alpha_{k+1 l m-10} q^{l} \llbracket k+l+1 \rrbracket\right\}\left(M_{1}^{1}\right)^{k}\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m} \\
& \left.+\sum_{n=1}^{\infty} \alpha_{0 l+1 m n-1} q^{-m} \llbracket l+1 \rrbracket\left(M_{2}^{1}\right)^{l}\left(M_{1}^{2}\right)^{m}\left(M_{2}^{2}\right)^{n}\right]
\end{aligned}
$$

(coefficients with negative indices are defined to be zero). For the derivative ${ }^{p} \mathrm{~d}: \Gamma_{\mathrm{Ad}}^{\wedge p} \rightarrow$ $\Gamma_{\mathrm{Ad}}^{\wedge(p+1)}$ on p-forms one gets similar results.

4. The DeRham Cohomology $\mathbf{H}^{p}\left(S U_{q}(2)\right)$

The DeRham Cohomology is defined as

$$
\mathrm{H}^{p}\left(S U_{q}(2)\right)=\frac{\operatorname{ker}\left({ }^{p} \mathrm{~d}\right)}{\operatorname{im}\left({ }^{p-1} \mathrm{~d}\right)}, \quad p>0, \quad \mathrm{H}^{0}\left(S U_{q}(2)\right)=\operatorname{ker}\left({ }^{0} \mathrm{~d}\right)
$$

If one writes $\operatorname{ker}\left({ }^{p} \mathrm{~d}\right)$ and $\operatorname{im}\left({ }^{p-1} \mathrm{~d}\right)$ in the basis elements (2) and right-invariant basis (4) one can compare both and find after some tedious calculations e.g.

$$
\operatorname{ker}\left({ }^{1} \mathrm{~d}\right)=\operatorname{im}\left({ }^{0} \mathrm{~d}\right) \oplus \mathbb{C} \tilde{X} \quad \Rightarrow \quad \mathrm{H}^{1}\left(S U_{q}(2)\right) \cong \mathbb{C}
$$

The results are:

$$
\begin{aligned}
& \mathrm{H}^{0}\left(S U_{q}(2)\right) \cong \mathbb{C} \\
& \mathrm{H}^{1}\left(S U_{q}(2)\right) \cong \mathbb{C}, \\
& \mathrm{H}^{2}\left(S U_{q}(2)\right)=0, \\
& \mathrm{H}^{3}\left(S U_{q}(2)\right) \cong \mathbb{C}, \\
& \mathrm{H}^{4}\left(S U_{q}(2)\right) \cong \mathbb{C}
\end{aligned}
$$

Comparing this result with $S U(2) \times U(1)$,

$$
\mathrm{H}^{p}(S U(2) \times U(1)) \cong \begin{cases}\mathbb{C} & \text { for } p=0, p=1, p=3 \text { or } p=4, \\ 0 & \text { otherwise },\end{cases}
$$

one sees that they are identical. This can be understood by considering the classical limit $q \rightarrow 1$. The right-invariant basis $\left\{\Theta_{\mathrm{Ad}}^{11}, \Theta_{\mathrm{Ad}}^{12}, \Theta_{\mathrm{Ad}}^{22}, \widetilde{X}\right\}$ of $\Gamma_{\mathrm{Ad} \text { inv }}$ goes over into the right-invariant basis of the classical bimodule $\Gamma_{S U(2)}^{\wedge}$ over $S U(2)$ plus a decoupled X, which can be seen as basis of $\Gamma_{U_{(1)}}^{\wedge}$.

Acknowledgements

I would like to thank Professor J. Wess for his hospitality. Also I thank the members of his group for stimulating discussions.

References

[CSWW] U. Carow-Watamura, M. Schlieker, S. Watamura and W. Weich, Bicovariant differential calculus on quantum groups $S U_{q}(N)$ and $S O_{q}(N)$, Commun. Math. Phys. 142 (1991) 605-641.
[Drin] V.G. Drinfeld, in: Quantum Groups, Proc. Intern. Congress of Mathematicians, Vol. 1 (1986) pp. 798-820.
[FRT] L.D. Faddeev, N.Y. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra and Analysis 1 (1989) 178 [in Russian].
[G] M. Grieß1, University of Munich (LMU) preprint LMU-TPW 93-18 (1993).
[Weich] W. Weich, Ph.D. Thesis, Die Quantengruppe $S U_{q}(2)$-kovariante Differentialrechnung und ein quantensymmetrisches quantenmechanisches Modell, University of Karlsruhe (TH), Germany (1990).
[Worl] S.L. Woronowicz, Twisted $S U(2)$ group. An example of non-commutative differential calculus, Publ. Res. Inst. Math. Sci. Kyoto Univ. 23 (1987) 117-181.
[Wor2] S.L. Woronowicz, Differential calculus on compact matrix pseudogroups, Commun. Math. Phys. 122 (1989) 125-170.

